Structure of 4-Methyl-5-[2-(2-pyrazinyl)vinyl]-3H-1,2-dithiole-3-thione* \dagger

By Chin Hsuan Wei
Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 28 April 1986; accepted 28 July 1986)

Abstract

C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{3}, \quad M_{r}=252 \cdot 380\), monoclinic, $P 2_{1} / c, \quad a=9.5215$ (7), $\quad b=10.0001$ (8), $\quad c=$ 11.862 (1) $\AA, \beta=98.190(8)^{\circ}, V=1117.9$ (2) \AA^{3}, Z $=4, D_{m}=1.50(1), D_{x}=1.499 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha} \alpha_{1}\right)=$ $1.54056 \AA, \quad \mu=55.45 \mathrm{~cm}^{-1}, \quad F(000)=520, \quad T=$ 296 (1) K. Final $R(F)=0.031$ for 1861 observed counter data with $F_{o}{ }^{2} \geq 2 \sigma\left(F_{o}{ }^{2}\right)$. The molecule is composed of a pyrazine ring and a five-membered heterocyclic ring linked together through a vinylene group. The length of the $\mathrm{C}=\mathrm{C}$ bond for the vinylene group is 1.325 (3) \AA. Other bond lengths and angles agree with those found in oltipraz and other analogous compounds containing dithiolethione rings. E.s.d.'s of bond lengths and angles involving C and N atoms are of the order of $0.003 \AA$ and 0.2°, respectively. The sixand five-membered rings are each essentially planar to within $0.005 \AA$; the vinylene carbons and the carbons bonded to them are coplanar to within $0.015 \AA$; the molecule as a whole has a roughly planar configuration. The angle between the plane normals of the two end rings is $11.54(5)^{\circ}$.

Introduction. Oltipraz, 4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiole-3-thione, is a slowly acting antischistosomal drug. Structurally this drug is composed of a pyrazine ring and a methyldithiolethione ring joined directly through a $\mathrm{C}-\mathrm{C}$ bond. In reporting the oltipraz activity, Bueding, Dolan \& Leroy (1982) pointed out that antischistosomal activity has rather stringent structural requirements. Replacement of the thione S atom by an O atom (Wei, 1985a) abolishes activity. When the methyl group is removed from the dithiolethione ring and the latter is connected directly either to a p-methoxyphenyl ring (Wang, Lin \& Wei, 1985) or to a phenyl ring (Wei, 1986) it also loses antischistosomal activity. The present paper reports a new type of structure that can be considered to be derived by connecting the methyldithiolethione ring and the pyrazine ring of oltipraz by a vinylene group. The

[^0]presence of the vinylene group rerders this compound inactive (Bueding, Dolan \& Leroy, 1982).

Experimental. Diamond-shaped dark maroon crystals grown at 257 K from a solution of $1: 1$ mixture of toluene and chloroform. Crystal density determined by flotation in mixtures of bromobenzene and xylene. Space group and approximate unit-cell parameters established from Weissenberg and precession photographs. Data from a crystal of dimensions $0.31 \times$ $0.30 \times 0.15 \mathrm{~mm}$ mounted on a Picker four-circle diffractometer. Lattice parameters refined by leastsquares method from angle measurements of 12 strong reflections in the 2θ range $85-100^{\circ}$ (Busing, Ellison, Levy, King \& Roseberry, 1968). Intensity data collected by $\theta-2 \theta$ step scans to $2 \theta_{\max }=134^{\circ}$. Ranges of h, k, $l:-11$ to 11,0 to 11,0 to 14 , respectively. One standard measured for every 40 reflections: variation $<0.8 \%$. Absorption corrections based on an azimuthal scan of reflection 004. Ratio of min. to max. transmission factors $0 \cdot 72$. Of the 1974 unique nonzero reflections, 113 reflections with $F_{o}{ }^{2}<2 \sigma\left(F_{o}{ }^{2}\right)$ excluded from final least-squares refinement, in which no extinction corrections were applied. Maximum mosaic spread of the crystal specimen estimated to be 0.4°. The structure was solved with MULTAN (Germain, Main \& Woolfson, 1971). H atoms located from a differenceFourier map lusing the program ORFFP3 (Levy, 1977)] and included in final least-squares refinement with the program ORXFLS 4 (Busing, Martin \& Levy, 1962). The function minimized was $\sum w\left|F_{o}{ }^{2}-s F_{c}{ }^{2}\right|^{2}$, where the weights w are reciprocals of variances $\sigma^{2}\left(F_{o}{ }^{2}\right)$, which were estimated from the empirical equation

$$
\sigma^{2}\left(F_{o}{ }^{2}\right)=A^{2} s^{2}\left\{\left[G+\left(t_{G} / t_{B}\right)^{2} B\right]+0.0036\left[G-\left(t_{G} / t_{B}\right) B\right]^{2}\right\} /(\mathrm{Lp})^{2},
$$

where $A=$ correction factor on the intensity for absorption, $s=$ scale factor on the intensity, $G=$ gross count, $B=$ background count, $t_{G} / t_{B}=$ ratio of gross intensity and background, and $\mathrm{Lp}=$ Lorentz-polarization factor. Scattering factors were from Cromer \& Waber (1974); anomalous-dispersion corrections for S ($f^{\prime}=0 \cdot 110, f^{\prime \prime}=0 \cdot 120$) from Cromer (1974). $\Delta x_{i} / \sigma$ for all nonhydrogen atoms $<0.01,\left(\Delta x_{i} / \sigma\right)_{\text {max }}$ for H parameters $=0 \cdot 02$. Final $R(F), R\left(F^{2}\right), w R\left(F^{2}\right)$ and S : $0.031,0.065,0.089$ and 1.327 , respectively. The
© 1987 International Union of Crystallography

Table 1. Positional and isotropic thermal parameters
The equivalent isotropic temperature factors for non- H atoms were calculated from the corresponding anisotropic thermal parameters and unit-cell parameters by the relation $B_{\mathrm{eq}}=\frac{4}{3}\left(\beta_{11} a^{2}+\beta_{22} b^{2}+\right.$ $\beta_{33} c^{2}+2 \beta_{13} a c \cos \beta$) (Hamilton, 1959).

	x	y	z	$B_{\text {eq }}$ or $B\left(\AA^{2}\right)$
S(1)	$0 \cdot 11141$ (4)	$0 \cdot 10067$ (4)	$0 \cdot 16380$ (3)	$3 \cdot 36$ (2)
S(2)	0.03528 (5)	-0.07954 (4)	0.21020 (4)	$3 \cdot 55$ (2)
S(3)	0.08125 (6)	-0.34176 (4)	$0 \cdot 11404$ (5)	4.47 (2)
N(1)	0.4328 (2)	0.2700 (2)	-0.1456 (1)	3.82 (4)
$\mathrm{N}(2)$	0.4071 (2)	0.5483 (2)	-0.1500 (1)	$4 \cdot 33$ (5)
C (1)	0.3527 (2)	0.3342 (2)	-0.0786 (1)	$3 \cdot 11$ (4)
C(2)	0.3406 (2)	0.4724 (2)	-0.0820 (2)	$3 \cdot 82$ (5)
C(3)	0.4872 (2)	0.4835 (2)	-0.2147 (2)	4.43 (6)
C(4)	0.4994 (2)	0.3463 (2)	-0.2126 (2)	4.42 (6)
C(5)	0.2758 (2)	0.2540 (2)	-0.0041 (1)	$3 \cdot 32$ (4)
C(6)	0.2755 (2)	0.1216 (2)	-0.0066 (1)	$3 \cdot 37$ (4)
C(7)	$0 \cdot 1108$ (2)	-0.1777 (2)	0.1149 (1)	$3 \cdot 24$ (4)
C(8)	$0 \cdot 1918$ (2)	-0.1038 (2)	0.0430 (1)	$3 \cdot 14$ (4)
C(9)	$0 \cdot 1992$ (2)	0.0317 (2)	0.0596 (1)	3.08 (4)
C(10)	0.2600 (2)	-0.1752 (2)	-0.0447 (2)	$4 \cdot 16$ (6)
H(2)*	0.279 (3)	0.520 (3)	-0.029 (2)	5.9 (6)
$\mathrm{H}(3)$	$0 \cdot 538$ (3)	0.524 (3)	-0.264 (2)	$5 \cdot 6$ (6)
H(4)	$0 \cdot 550$ (3)	0.304 (3)	-0.256 (2)	$5 \cdot 2$ (5)
H(5)	$0 \cdot 220$ (2)	$0 \cdot 306$ (2)	0.048 (2)	$3 \cdot 8$ (4)
H(6)	0.325 (2)	0.084 (2)	-0.057 (2)	3.4 (4)
H(10a)	0.249 (4)	-0.130 (3)	-0.110 (3)	$8 \cdot 8$ (9)
H(10b)	0.205 (4)	-0.243 (3)	-0.068 (3)	8.4 (8)
$\mathrm{H}(10 c)$	$0 \cdot 346$ (4)	-0.196 (3)	-0.018 (2)	7.7 (8)

[^1]data-to-variable ratio was $10 \cdot 88$. With all 1974 unique nonzero reflections included, $R(F)=0.033$; subsequent $\Delta \rho$ excursions <0.32 e \AA^{-3}.

Discussion. Positional parameters and isotropic temperature factors (or their equivalents) are listed in Table 1.* \dagger

The molecule is depicted in Fig. 1, in which bond lengths and angles, calculated with the program ORFFE4 (Busing, Martin \& Levy, 1964), are also given. All figures were prepared with the program ORTEPII (Johnson, 1976). The vinylene group is connected to the six-membered ring and the fivemembered ring through bonds $\mathrm{C}(5)-\mathrm{C}(1)$ and $\mathrm{C}(6)-$ $\mathrm{C}(9)$, both of which are shorter than the single-bond C-C length of $1.544 \AA$ because they are in a conjugated system, as in the inter-ring bond in oltipraz (Wei, 1983). The double-bond character of $\mathrm{C}(5)-\mathrm{C}(6)$ is evidenced by the length of 1.325 (3) \AA. Interior angles at N atoms less than 120° and at C atoms larger than 120°, characteristic of a pyrazine ring and pointed

[^2]out in the structure of oltipraz (Wei, 1983, and references cited therein), are again observed in this structure. The molecular parameters for the methyldithiolethione ring are also similar to those found in analogous compounds: 4 -methyl- 3 H -1,2-dithiole-3thione (Jeffrey \& Shiono, 1959), oltipraz (Wei, 1983), 5 -(p-methoxyphenyl)-3H-1,2-dithiole-3-thione (Wang, Lin \& Wei, 1985), 4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiol-3-one (Wei, 1985a), 3H-1,2-dithiole-3-thione (Wei, 1985b), 4- and 5-phenyl-3H-1,2-dithiole-3-thione (Wei, 1986). In this family of compounds, the S-S bond lengths range from 2.035 to $2.050 \AA$, with an average value of 2.045 (0.4) \AA; and the average $\mathrm{C}=\mathrm{S}$ bond length is 1.667 (1) \AA. These average bond lengths are in fair agreement with those found in xanthane hydride
(5-amino-3H-1,2,4-dithiazole-3-thione): 2.052 (4) and 1.650 (9) \AA (Stanford, 1963); 2.063 (5) and 1.653 (9) \AA (Hordvik, 1963). In the dithiole heterocyclic ring system the angle subtended at $\mathbf{S}(2)$ has been found to be invariably greater than the angle subtended at $\mathrm{S}(1)$.

Fig. 1. View of the $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{3}$ molecule approximately perpendicular to the molecular plane, showing the numbering scheme and also the bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ with their e.s.d.'s.

Fig. 2. A stereoscopic view showing the packing viewed along a. The axial system is right-handed. For the sake of clarity, H atoms are not included, and only S and N atoms of the reference molecule are labeled. The origin of the unit cell is in the upper left rear corner.

The pyrazine ring and the dithiolethione ring are both essentially planar to within $0.005 \AA$. The vinylene C atoms and the two C atoms bonded to them are coplanar to within $0.015 \AA$. This four-C-atom plane is nearly coplanar with the six- and five-membered ring planes, and the molecule as a whole is roughly planar, in sharp contrast with the molecules of 4- and 5 -phenyl-3H-1,2-dithiole-3-thione (Wei, 1986) in which plane normals of the six- and five-membered rings form angles of $67.40(9)$ and $29.36(8)^{\circ}$, respectively. In the present structure, angles between plane normals for planes of the vinylene group and five- and sixmembered rings are $6 \cdot 2(1)$ and $5.4(1)^{\circ}$, respectively; and that between five- and six-membered rings is 11.54 (5) ${ }^{\circ}$.

Fig. 2 shows the [100] projection of the unit cell. The packing of the molecules is assumed to be mainly dictated by van der Waals forces. The closest intermolecular contact between nonhydrogen atoms is 3.392 (2) \AA for $\mathrm{C} \cdots \mathrm{N}$, and the closest such contact between nonhydrogen and H atoms is 2.71 (3) \AA for $\mathrm{N} \cdots \mathrm{H}$.

The compound used in this study was generously furnished by Professor Ernest Bueding of The Johns Hopkins University. The author is grateful to Drs G. M. Brown and W. R. Busing of the Chemistry Division of ORNL for the use of their diffractometer and for their criticism of the manuscript. He is also indebted to Dr C. R. Richmond, Associate Director of ORNL, for the arrangement of financial support.

References

Bueding, E., Dolan, P. \& Leroy, P. (1982). Res. Commun. Chem. Pathol. Pharmacol. 37, 293-303.
Busing, W. R., Ellison, R. D., Levy, H. A., King, S. P. \& Roseberry, R. T. (1968). The Oak Ridge Computer-Controlled X-ray Diffractometer. Report ORNL-4143. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). OrflS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). Orffe. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. (1974). International Tables for X-ray Crystallography. Vol. IV, p. 149, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography. Vol. IV, pp. 72-75, Table 2.2A. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hordvik, A. (1963). Acta Chem. Scand. 17, 2575-2592.
Jeffrey, G. A. \& Shiono, R. (1959). Acta Cryst. 12, 447-454.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5128. Oak Ridge National Laboratory, Tennessee.
Levy, H. A. (1977). Oak Ridge Fast Fourier Package, ORFFP3. Oak Ridge National Laboratory, Tennessee.
Stanford, R. H. Jr (1963). Acta Cryst. 16, 1157-1 162.
Wang, Y., Lin, H. C. \& Wei, C. H. (1985). Acta Cryst. C41, 1242-1244.
WEI, C. H. (1983). Acta Cryst. C39, 1079-1082.
Wei, C. H. (1985a). Acta Cryst. C41, 1525-1528.
Wei, C. H. (1985b). Acta Cryst. C41, 1768-1770.
Wei, C. H. (1986). Acta Cryst. C42, 1836-1839.

The Double-Stack Structure of $\operatorname{Di}\left(3,4\right.$-ethylenedithio- $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-dimethyl-2,2',5,5'-tetrathiafulvalenium) Perchlorate,* (DIMET) $\mathbf{2}^{\mathbf{C l O}}{ }_{4}$

By H. Endres, R. Heid and H. J. Keller
Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1, Federal Republic of Germany
and I. Heinen and D. Schweitzer
Max-Planck-Institut für Medizinische Forschung, Abteilung für Molekulare Physik, Jahnstrasse 29, D-6900 Heidelberg 1, Federal Republic of Germany

(Received 14 February 1986; accepted 31 July 1986)

Abstract. ${ }^{2 \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~S}_{6}^{1 / 2+} . \mathrm{ClO}_{4}^{-}, \quad M_{r}=744 \cdot 62, \text { triclinic, }}$
$P \overline{1}, a=7.000(2), \quad b=7.824(3), c=27 \cdot 010(14) \AA$,

[^3]$\alpha=88.10$ (4), $\quad \beta=89.02$ (4), $\gamma=74.58$ (3) ${ }^{\circ}, \quad V=$ $1425 \AA^{3}, \quad Z=2, \quad D_{x}=1.73 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=$ $0.7107 \AA, \mu=10.1 \mathrm{~cm}^{-1}, F(000)=762$, room temperature, final $R=0.063$ for 3076 observed independent reflections. Two crystallographically independent

[^0]: * Research supported by the Office of Health and Environmental Research, US Department of Energy, under contract DE-AC05840R21400 with the Martin Marietta Energy Systems, Inc.
 \dagger Presented in part as Paper PB30, American Crystallographic Association Meeting, Hamilton, Ontario, Canada, 22-27 June 1986.

[^1]: * H atoms are numbered according to the C atoms to which they are attached.

[^2]: * Lists of structure factors, anisotropic thermal parameters and equations of best molecular planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43287 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 \dagger The e.s.d.'s are given in parentheses in all tables and in the text. The digits in parentheses correspond to the least-significant digits of the parameters.

[^3]: * Alternative nomenclature: di(4,5-ethylenedithio-4', 5^{\prime}-dimethyl-2,2'-bi-1,3-dithiolyliden)ium perchlorate.

